🔗 APIs for AI

Master building, consuming, and deploying APIs for AI applications and services

← Back to CS Courses

APIs for AI Curriculum

12
Comprehensive Units
~80
API Concepts
25+
Integration Patterns
35+
Practical Examples
1

API Fundamentals

Understand the basics of APIs, REST principles, and their role in AI applications.

  • What are APIs?
  • REST architectural style
  • HTTP methods and status codes
  • API design principles
  • Request and response formats
  • API documentation
  • Best practices
  • Common pitfalls
2

Building AI APIs

Learn to create robust APIs that serve machine learning models and AI services.

  • Model serving architectures
  • API frameworks
  • Request validation
  • Response formatting
  • Error handling
  • Input preprocessing
  • Output postprocessing
  • Batch vs real-time APIs
3

Consuming AI APIs

Master techniques for integrating with third-party AI services and APIs.

  • API client development
  • Authentication methods
  • Rate limiting handling
  • Retry strategies
  • SDK integration
  • Popular AI services
  • Cost optimization
  • Vendor comparison
4

Authentication and Security

Implement secure authentication and authorization for AI APIs.

  • API key management
  • OAuth 2.0 flows
  • JWT tokens
  • Role-based access control
  • Input sanitization
  • Data encryption
  • Audit logging
  • Security best practices
5

API Documentation and Testing

Create comprehensive documentation and robust testing strategies for AI APIs.

  • OpenAPI specification
  • Interactive documentation
  • Code examples
  • Unit testing APIs
  • Integration testing
  • Load testing
  • Mock services
  • Test automation
6

Performance and Scaling

Optimize API performance and implement scaling strategies for high-traffic AI services.

  • Performance monitoring
  • Caching strategies
  • Load balancing
  • Auto-scaling
  • Database optimization
  • CDN integration
  • Async processing
  • Bottleneck identification
7

Real-time AI APIs

Build real-time AI services using WebSockets, streaming, and event-driven architectures.

  • WebSocket APIs
  • Server-sent events
  • Streaming responses
  • Real-time predictions
  • Connection management
  • Message queuing
  • Event-driven patterns
  • Latency optimization
8

API Gateway and Management

Learn to manage and orchestrate multiple AI APIs using gateway solutions.

  • API gateway concepts
  • Traffic routing
  • Rate limiting
  • Request transformation
  • Analytics and monitoring
  • Version management
  • Circuit breakers
  • Service mesh integration
9

GraphQL for AI

Explore GraphQL as an alternative to REST for flexible AI data querying.

  • GraphQL fundamentals
  • Schema design
  • Resolvers for AI models
  • Query optimization
  • Subscriptions
  • Federation
  • Caching strategies
  • GraphQL vs REST
10

Microservices for AI

Design microservice architectures for scalable AI applications.

  • Microservices patterns
  • Service decomposition
  • Inter-service communication
  • Data consistency
  • Distributed tracing
  • Container orchestration
  • Service discovery
  • Failure handling
11

API Monetization

Implement business models and monetization strategies for AI APIs.

  • Pricing models
  • Usage tracking
  • Billing systems
  • Quota management
  • Subscription handling
  • Free tier strategies
  • Analytics for business
  • Customer onboarding
12

Future of AI APIs

Explore emerging trends and technologies shaping the future of AI APIs.

  • Serverless AI APIs
  • Edge computing
  • API standards evolution
  • No-code/low-code integration
  • AI API marketplaces
  • Ethical AI considerations
  • Regulatory compliance
  • Industry trends

Unit 1: API Fundamentals

Understand the basics of APIs, REST principles, and their role in AI applications.

What are APIs?

Learn the fundamental concepts of Application Programming Interfaces and their importance in modern software development.

Interface Communication Integration
An API (Application Programming Interface) is a set of protocols, routines, and tools that specify how software components should interact. APIs enable different applications to communicate and share data seamlessly.
# API Fundamentals
api_concepts = {
  "definition": "Set of protocols for building and integrating application software",
  "purpose": {
    "abstraction": "Hide implementation details",
    "modularity": "Enable component reuse",
    "interoperability": "Allow different systems to communicate",
    "scalability": "Support distributed architectures"
  },
  "types": {
    "web_apis": "HTTP-based interfaces for web services",
    "library_apis": "Programming interfaces for code libraries",
    "operating_system_apis": "System calls and OS functions",
    "database_apis": "Interfaces for data access and manipulation"
  },
  "ai_context": {
    "model_serving": "Expose AI models as web services",
    "data_integration": "Connect AI systems with data sources",
    "workflow_orchestration": "Chain multiple AI services",
    "third_party_integration": "Access external AI capabilities"
  }
}

REST Architectural Style

Master the principles of Representational State Transfer (REST) for building scalable web APIs.

REST Principles:
• Stateless: Each request contains all necessary information
• Client-server: Separation of concerns between UI and data storage
• Cacheable: Responses should be cacheable when appropriate
• Uniform interface: Consistent resource identification and manipulation
• Layered system: Support for intermediary layers like proxies
• Code on demand (optional): Server can send executable code
RESTful AI APIs:
REST is ideal for AI APIs because it provides a simple, scalable approach to exposing model predictions and managing AI resources. The stateless nature fits well with model inference patterns.
# REST API Design for AI
rest_ai_api = {
  "resources": {
    "models": "/api/v1/models",
    "predictions": "/api/v1/models/{model_id}/predict",
    "training_jobs": "/api/v1/training",
    "datasets": "/api/v1/datasets"
  },
  "http_methods": {
    "GET": "Retrieve model info or prediction results",
    "POST": "Submit prediction requests or start training",
    "PUT": "Update model configuration",
    "DELETE": "Remove models or stop training jobs"
  },
  "example_endpoints": {
    "list_models": "GET /api/v1/models",
    "get_model": "GET /api/v1/models/sentiment-v1",
    "predict": "POST /api/v1/models/sentiment-v1/predict",
    "batch_predict": "POST /api/v1/models/sentiment-v1/batch"
  }
}

HTTP Methods and Status Codes

Understand proper usage of HTTP methods and status codes for meaningful API communication.

HTTP Methods for AI APIs:
• GET: Retrieve model metadata, prediction results, training status
• POST: Submit predictions, start training, upload data
• PUT: Update model configurations, replace datasets
• PATCH: Partial updates to model settings
• DELETE: Remove models, cancel jobs, clear caches
Status Code Best Practices:
Use appropriate status codes to help clients understand response outcomes and implement proper error handling. This is crucial for robust AI API integrations.
# HTTP Status Codes for AI APIs
ai_api_status_codes = {
  "success_codes": {
    "200": "Prediction completed successfully",
    "201": "Model created or training job started",
    "202": "Prediction request accepted for processing",
    "204": "Model deleted successfully"
  },
  "client_error_codes": {
    "400": "Invalid input data format",
    "401": "Authentication required",
    "403": "Insufficient permissions for model access",
    "404": "Model not found",
    "422": "Input validation failed",
    "429": "Rate limit exceeded"
  },
  "server_error_codes": {
    "500": "Model inference failed",
    "502": "Upstream model service unavailable",
    "503": "Service temporarily overloade