What is TensorFlow
Understand TensorFlow as Google's open-source machine learning framework.
Framework
Open Source
Google
TensorFlow is an end-to-end open source platform for machine learning that provides a comprehensive ecosystem of tools, libraries, and community resources for building and deploying ML-powered applications.
TensorFlow Ecosystem
Explore the complete TensorFlow ecosystem and its various components.
Core TensorFlow: Main library for building and training models
Keras: High-level API for rapid prototyping
TensorFlow Lite: Mobile and embedded deployment
TensorFlow.js: JavaScript implementation for web/Node.js
TensorFlow Serving: Production model serving
TensorBoard: Visualization and monitoring tools
# TensorFlow ecosystem overview
import tensorflow as tf
print(f"TensorFlow version: {tf.__version__}")
# Core components demonstration
def explore_tensorflow_ecosystem():
"""Explore different TensorFlow components"""
print("=== TENSORFLOW ECOSYSTEM ===")
# 1. Core TensorFlow
print("\\nš„ Core TensorFlow:")
print(f" Version: {tf.__version__}")
print(f" GPU Available: {tf.config.list_physical_devices('GPU')}")
print(f" Built with CUDA: {tf.test.is_built_with_cuda()}")
# 2. Keras Integration
print("\\nšÆ Keras (High-level API):")
print(f" Keras version: {tf.keras.__version__}")
print(f" Available optimizers: {len(tf.keras.optimizers.__dict__)} types")
# 3. Data handling
print("\\nš Data Pipeline (tf.data):")
sample_dataset = tf.data.Dataset.range(10)
print(f" Sample dataset created: {sample_dataset}")
# 4. Available modules
print("\\nš§° Available Modules:")
key_modules = {
"tf.keras": "High-level neural network API",
"tf.data": "Input pipeline API",
"tf.image": "Image processing operations",
"tf.math": "Mathematical operations",
"tf.nn": "Neural network operations",
"tf.train": "Training utilities",
"tf.saved_model": "Model serialization",
"tf.summary": "TensorBoard logging"
}
for module, description in key_modules.items():
print(f" {module}: {description}")
return key_modules
# Run the exploration
ecosystem_info = explore_tensorflow_ecosystem()
print("\\n=== TENSORFLOW ADVANTAGES ===")
advantages = [
"š End-to-end ML platform",
"ā” Scalable from mobile to clusters",
"šÆ Production-ready deployment",
"š§āš» Large community and ecosystem",
"š Extensive documentation and tutorials",
"š§ Flexible for research and production"
]
for advantage in advantages:
print(f" {advantage}")
Installation and Setup
Learn how to install and configure TensorFlow for your development environment.
TensorFlow can be installed via pip, conda, or Docker. GPU support requires additional CUDA and cuDNN installations for optimal performance.
# TensorFlow installation guide
"""
=== INSTALLATION METHODS ===
1. CPU-only installation:
pip install tensorflow
2. GPU installation (recommended):
pip install tensorflow[and-cuda]
3. Using conda:
conda install -c conda-forge tensorflow
4. Development version:
pip install tf-nightly
"""
# Installation verification
import tensorflow as tf
import sys
def verify_installation():
"""Verify TensorFlow installation"""
print("=== TENSORFLOW INSTALLATION VERIFICATION ===")
# Basic info
print(f"Python version: {sys.version}")
print(f"TensorFlow version: {tf.__version__}")
# Hardware detection
print("\\nš„ļø Hardware Detection:")
print(f" CPU devices: {len(tf.config.list_physical_devices('CPU'))}")
print(f" GPU devices: {len(tf.config.list_physical_devices('GPU'))}")
# GPU details if available
gpus = tf.config.list_physical_devices('GPU')
if gpus:
print("\\nš GPU Information:")
for i, gpu in enumerate(gpus):
print(f"