🎯 K-Means Clustering

Master centroid-based clustering, optimization, and unsupervised pattern discovery for data grouping

← Back to Data Science

K-Means Clustering Curriculum

10
Core Units
~55
Key Concepts
8+
Algorithms
25+
Practical Examples
1

Introduction to Clustering

Understand clustering fundamentals and how K-means fits into unsupervised learning.

  • What is clustering
  • Unsupervised learning context
  • Types of clustering algorithms
  • Clustering applications
  • Similarity and distance measures
  • Clustering challenges
  • Evaluation without labels
  • K-means overview
2

K-Means Algorithm Fundamentals

Learn the core K-means algorithm and its iterative optimization process.

  • Algorithm overview
  • Centroid concept
  • Assignment step
  • Update step
  • Convergence criteria
  • Iterative process
  • Objective function
  • Lloyd's algorithm
3

Distance Metrics and Similarity

Master different distance measures used in K-means clustering.

  • Euclidean distance
  • Manhattan distance
  • Cosine similarity
  • Minkowski distance
  • Distance metric properties
  • Impact on cluster shape
  • Choosing appropriate metrics
  • Custom distance functions
4

Centroid Initialization

Learn initialization strategies that significantly impact clustering results.

  • Random initialization
  • K-means++ algorithm
  • Forgy initialization
  • Random partition method
  • Multiple random starts
  • Initialization impact
  • Avoiding poor local optima
  • Best practices
5

Choosing the Optimal K

Master techniques for selecting the optimal number of clusters.

  • Elbow method
  • Silhouette analysis
  • Gap statistic
  • Information criteria
  • Cross-validation approaches
  • Domain knowledge integration
  • Stability-based methods
  • Practical guidelines
6

K-Means Convergence

Understand convergence properties and optimization aspects of K-means.

  • Convergence guarantees
  • Local vs global optima
  • Objective function minimization
  • Within-cluster sum of squares
  • Iteration limits
  • Tolerance settings
  • Convergence speed
  • Computational complexity
7

K-Means Limitations

Learn the assumptions and limitations of the K-means algorithm.

  • Spherical cluster assumption
  • Equal cluster size bias
  • Sensitivity to outliers
  • Scale sensitivity
  • Curse of dimensionality
  • Non-convex cluster shapes
  • Predetermined K requirement
  • Initialization dependency
8

K-Means Variants

Explore variations and improvements to the standard K-means algorithm.

  • K-means++
  • Mini-batch K-means
  • Fuzzy C-means
  • K-medoids (PAM)
  • Kernel K-means
  • Bisecting K-means
  • Spherical K-means
  • Online K-means
9

Cluster Evaluation

Learn methods to assess the quality of K-means clustering results.

  • Internal validation metrics
  • Silhouette coefficient
  • Calinski-Harabasz index
  • Davies-Bouldin index
  • Within-cluster sum of squares
  • Between-cluster separation
  • Visual assessment techniques
  • Stability analysis
10

Implementation and Applications

Build K-means from scratch and explore real-world applications.

  • NumPy implementation
  • Scikit-learn usage
  • Performance optimization
  • Large dataset handling
  • Customer segmentation
  • Image compression
  • Market research
  • Data preprocessing

Unit 1: Introduction to Clustering

Understand clustering fundamentals and how K-means fits into unsupervised learning.

What is Clustering

Learn the fundamental concept of grouping similar data points together without labeled examples.

Grouping Similarity Unsupervised
Clustering is the task of grouping data points such that points in the same group (cluster) are more similar to each other than to points in other groups.

Types of Clustering Algorithms

Explore different approaches to clustering and understand where K-means fits.

Partitional: K-means, K-medoids - Divide data into non-overlapping clusters
Hierarchical: Agglomerative, Divisive - Create tree-like cluster structures
Density-based: DBSCAN, OPTICS - Find clusters based on density regions
Model-based: Gaussian Mixture Models - Assume underlying probability distributions
# Overview of clustering algorithm types
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.mixture import GaussianMixture
import matplotlib.pyplot as plt

# Generate sample data
X, y_true = make_blobs(n_samples=300, centers=4, n_features=2,
                        random_state=42, cluster_std=1.5)

print("=== CLUSTERING ALGORITHM COMPARISON ===")

# K-means (Partitional)
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans_labels = kmeans.fit_predict(X)
print(f"K-means clusters: {len(np.unique(kmeans_labels))}")

# Hierarchical (Agglomerative)
hierarchical = AgglomerativeClustering(n_clusters=4)
hierarchical_labels = hierarchical.fit_predict(X)
print(f"Hierarchical clusters: {len(np.unique(hierarchical_labels))}")

# Density-based (DBSCAN)
dbscan = DBSCAN(eps=0.8, min_samples=5)
dbscan_labels = dbscan.fit_predict(X)
n_dbscan_clusters = len(set(dbscan_labels)) - (1 if -1 in dbscan_labels else 0)
print(f"DBSCAN clusters: {n_dbscan_clusters}")

# Model-based (Gaussian Mixture)
gmm = GaussianMixture(n_components=4, random_state=42)
gmm_labels = gmm.fit_predict(X)
print(f"GMM clusters: {len(np.unique(gmm_labels))}")

print("\\n=== ALGORITHM CHARACTERISTICS ===")
characteristics = {
  "K-means": {
    "Type": "Partitional",
    "Clusters": "Spherical, equal size",
    "K": "Must specify",
    "Complexity": "O(n*k*i*d)"
  },
  "Hierarchical": {
    "Type": "Hierarchical",
    "Clusters": "Any shape",
    "K": "Choose from dendrogram",
    "Complexity": "O(n³)"
  },
  "DBSCAN": {
    "Type": "Density-based",
    "Clusters": "Any shape, handles noise",
    "K": "Automatic",
    "Complexity": "O(n log n)"
  }
}

for alg, props in characteristics.items():
  print(f"\\n{alg}:")
  for prop, value in props.items():
    print(f" {prop}: {value}")

Clustering Applications

Discover real-world applications where clustering provides valuable insights.

Customer Segmentation: Group customers by behavior
Market Research: Identify consumer preferences
Image Segmentation: Separate image regions
Gene Sequencing: Group similar genetic patterns
Recommendation Systems: Find user/item groups
# Real-world clustering applications
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

print("=== CUSTOMER SEGMENTATION EXAMPLE ===")

# Simulate customer data
np.random.seed(42)
n_customers = 1000

# Customer features
age = np.random.normal(40, 15, n_customers)
income = np.random.normal(50000, 20000, n_customers)
spending_score = np.random.normal(50, 25, n_customers)

# Create customer dataset
customers = pd.DataFrame({
  'Age': np.clip(age, 18, 80),
  'Income': np.clip(income, 20000, 150000),
  'SpendingScore': np.clip(spending_score, 1, 100)
})

print("Customer data sample:")
print(customers.head())
print(f"\\nDataset shape: {customers.shape}")

# Standardize features
scaler = StandardScaler()
customers_scaled = scaler.fit_transform(customers)

# Apply K-means clustering
kmeans = KMeans(n_clusters=4, random_state=42)
customer_segments = kmeans.fit_predict(customers_scaled)

# Add cluster labels to dataframe
customers['Segment'] = customer_segments

print("\\n=== CUSTOMER SEGMENTS ===")
for segment in range(4):
  segment_data = customers[customers['Segment'] == segment]
  print(f"\\nSegment {segment}: {len(segment_data)} customers")
  print(f" Avg Age: {segment_data['Age'].mean():.1f}")
  print(f" Avg Income: ${segment_data['Income'].mean():,.0f}")
  print(f" Avg Spending: {segment_data['SpendingScore'].mean():.1f}")

print("\\n=== OTHER APPLICATIONS ===")
applications = {
  "Healthcare": "Patient risk stratification, disease subtypes",
  "Marketing": "Campaign targeting, product positioning",
  "Biology": "Gene expression analysis, species classification",
  "Image Processing": "Color quantization, object detection",
  "Social Networks": "Community detection, influence analysis",
  "Finance": "Portfolio optimization, fraud detection"
}

for domain, use_cases