Model Selection Process
Learn the systematic steps for choosing the best machine learning algorithm for your problem.
Process
Systematic
Methodology
Model selection involves systematically comparing different algorithms, evaluating their performance, and choosing the best one based on multiple criteria including accuracy, interpretability, and computational efficiency.
Algorithm Comparison Strategies
Understand how to fairly compare different machine learning algorithms.
Fair Comparison Requirements:
• Same train/validation/test splits
• Consistent preprocessing
• Proper hyperparameter tuning for each algorithm
• Statistical significance testing
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
def comprehensive_model_comparison():
"""Compare multiple algorithms systematically"""
# Generate sample data
X, y = make_classification(n_samples=1000, n_features=20,
n_informative=15, random_state=42)
# Standardize features (important for some algorithms)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Define models to compare
models = {
'Logistic Regression': LogisticRegression(random_state=42),
'Random Forest': RandomForestClassifier(random_state=42),
'SVM': SVC(random_state=42),
'K-NN': KNeighborsClassifier(),
}
# Cross-validation setup
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
print("=== ALGORITHM COMPARISON ===")
results = {}
for name, model in models.items():
# Use scaled data for algorithms that need it
if name in ['Logistic Regression', 'SVM', 'K-NN']:
X_input = X_scaled
else:
X_input = X
# Perform cross-validation
scores = cross_val_score(model, X_input, y, cv=cv, scoring='accuracy')
results[name] = {
'mean': scores.mean(),
'std': scores.std(),
'scores': scores
}
print(f"{name:20s}: {scores.mean():.3f} (+/- {scores.std()*2:.3f})")
# Rank models by performance
print("\\n=== MODEL RANKING ===")
ranked = sorted(results.items(), key=lambda x: x[1]['mean'], reverse=True)
for i, (name, result) in enumerate(ranked, 1):
print(f"{i}. {name}: {result['mean']:.3f}")
return results
comprehensive_model_comparison()
print("\\n=== COMPARISON CONSIDERATIONS ===")
print("✅ Same data splits for fair comparison")
print("✅ Appropriate preprocessing for each algorithm")
print("✅ Cross-validation for robust estimates")
print("✅ Statistical significance testing needed")
print("⚠️ Consider: speed, interpretability, memory usage")