šŸ“ Principal Component Analysis

Master dimensionality reduction, eigenvalues, and variance maximization for data compression and visualization

← Back to Data Science

Principal Component Analysis Curriculum

10
Core Units
~60
Key Concepts
8+
Mathematical Topics
25+
Practical Examples
1

Dimensionality Reduction Motivation

Understand why we need to reduce dimensions and the challenges of high-dimensional data.

  • Curse of dimensionality
  • Computational complexity
  • Storage requirements
  • Visualization challenges
  • Noise reduction benefits
  • Feature redundancy
  • Overfitting prevention
  • Real-world applications
2

Linear Algebra Foundations

Build essential linear algebra knowledge required for understanding PCA.

  • Vectors and vector spaces
  • Matrix operations
  • Eigenvalues and eigenvectors
  • Matrix decomposition
  • Orthogonality concepts
  • Covariance matrices
  • Linear transformations
  • Geometric interpretation
3

Variance and Covariance

Master variance, covariance, and their role in capturing data relationships.

  • Variance definition
  • Covariance calculation
  • Covariance matrix
  • Correlation vs covariance
  • Positive vs negative covariance
  • Multivariate relationships
  • Data standardization
  • Geometric interpretation
4

Principal Components Concept

Understand what principal components are and how they capture data variation.

  • Principal component definition
  • Direction of maximum variance
  • Orthogonal components
  • Linear combinations
  • Component ordering
  • Geometric intuition
  • Data projection
  • Information preservation
5

PCA Algorithm Steps

Learn the step-by-step process of computing principal components.

  • Data standardization
  • Covariance matrix computation
  • Eigenvalue decomposition
  • Eigenvector sorting
  • Principal component selection
  • Data transformation
  • Dimensionality reduction
  • Reconstruction process
6

Explained Variance

Understand how to measure and interpret the information captured by each component.

  • Variance explained ratio
  • Cumulative explained variance
  • Scree plots
  • Choosing number of components
  • Information loss quantification
  • Elbow method
  • Kaiser criterion
  • Practical guidelines
7

Data Preprocessing for PCA

Learn essential preprocessing steps for effective PCA application.

  • Feature scaling importance
  • Standardization vs normalization
  • Centering data
  • Handling missing values
  • Outlier treatment
  • Scale sensitivity
  • When to standardize
  • Preprocessing best practices
8

PCA Applications

Explore real-world applications of PCA across different domains.

  • Data visualization
  • Image compression
  • Face recognition
  • Genomics and bioinformatics
  • Financial data analysis
  • Feature engineering
  • Noise reduction
  • Preprocessing for ML
9

PCA Limitations and Alternatives

Understand PCA limitations and explore alternative dimensionality reduction methods.

  • Linear transformation limitation
  • Interpretability challenges
  • Outlier sensitivity
  • Gaussian assumption
  • Kernel PCA
  • Independent Component Analysis
  • t-SNE comparison
  • Method selection criteria
10

Implementation and Practice

Build PCA implementations from scratch and master practical usage.

  • NumPy implementation
  • Scikit-learn usage
  • Performance optimization
  • Memory considerations
  • Incremental PCA
  • Sparse PCA
  • Visualization techniques
  • Case study projects

Unit 1: Dimensionality Reduction Motivation

Understand why we need to reduce dimensions and the challenges of high-dimensional data.

Curse of Dimensionality

Learn how high-dimensional data creates unique challenges for machine learning algorithms.

High Dimensions Sparsity Distance Metrics
The curse of dimensionality refers to various phenomena that arise when analyzing data in high-dimensional spaces, where intuitions from low-dimensional space often don't apply.

Computational Complexity

Understand how computational requirements scale with the number of dimensions.

Storage: O(n Ɨ d) - Linear growth with dimensions
Distance Computation: O(d) per pair
Matrix Operations: O(d²) to O(d³) depending on algorithm
import numpy as np
import time
import matplotlib.pyplot as plt

def demonstrate_computational_scaling():
  """Show how computation time scales with dimensions"""
  
  dimensions = [10, 50, 100, 500, 1000, 2000]
  times = []
  n_samples = 1000
  
  for d in dimensions:
    # Generate random data
    X = np.random.randn(n_samples, d)
    
    # Time covariance matrix computation
    start_time = time.time()
    cov_matrix = np.cov(X.T)
    end_time = time.time()
    
    times.append(end_time - start_time)
    print(f"Dimensions: {d:4d}, Time: {end_time - start_time:.4f}s, "
          f"Memory: {X.nbytes / 1024**2:.1f}MB")
  
  return dimensions, times

# Demonstrate scaling issues
print("=== COMPUTATIONAL SCALING WITH DIMENSIONS ===")
dims, computation_times = demonstrate_computational_scaling()

print("\\n=== STORAGE REQUIREMENTS ===")
for d in [100, 1000, 10000]:
  n_samples = 10000
  storage_mb = (n_samples * d * 8) / (1024**2) # 8 bytes per float64
  print(f"{d:5d} dimensions: {storage_mb:6.1f} MB")

print("\\n=== DISTANCE COMPUTATION CHALLENGES ===")
# Demonstrate how distances become similar in high dimensions
for d in [2, 10, 100, 1000]:
  np.random.seed(42)
  X = np.random.randn(100, d)
  
  # Compute pairwise distances
  from scipy.spatial.distance import pdist
  distances = pdist(X)
  
  print(f"Dimensions: {d:4d}, Distance std/mean: {distances.std()/distances.mean():.3f}")

Visualization Challenges

Explore the difficulties of visualizing and understanding high-dimensional data.

Humans can only visualize up to 3 dimensions effectively. Higher dimensions require projection techniques or alternative visualization methods to gain insights.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA

def visualization_challenge_demo():
  """Demonstrate visualization challenges with high-D data"""
  
  # Load high-dimensional data (64 dimensions)
  digits = load_digits()
  X, y = digits.data, digits.target
  
  print(f"Original data shape: {X.shape}")
  print(f"We have {X.shape[1]} dimensions to visualize!")
  
  # Can't visualize 64D directly - need dimensionality reduction
  pca = PCA(n_components=2)
  X_2d = pca.fit_transform(X)
  
  print(f"After PCA: {X_2d.shape}")
  print(f"Variance explained: {pca.explained_variance_ratio_.sum():.1%}")
  
  # Now we can visualize in 2D
  plt.figure(figsize=(10, 8))
  scatter = plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y, cmap='tab10')
  plt.colorbar(scatter)
  plt.title('64D Digits Data Projected to 2D using PCA')
  plt.xlabel('First Principal Component')
  plt.ylabel('Second Principal Component')
  plt.show()
  
  return X_2d

# Show the challenge
print("=== HIGH-DIMENSIONAL VISUALIZATION CHALLENGE ===")
projected_data = visualization_challenge_demo()

print("\\n=== WHAT WE LOSE IN PROJECTION ===")
print("- Can't see all relationships between features")
print("- Some clusters might overlap in 2D projection")
print("- Information is compressed and potentially lost")
print("- Need to choose which dimensions to visualize")

Feature Redundancy

Learn how correlated features create redundancy in high-dimensional datasets.

Correlation Redundancy Information
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

def demonstrate_feature_redundancy():
  """Show how features can be redundant/correlated"""
  
  np.random.seed(42)
  n_samples = 1000
  
  # Create correlated features
  feature1 = np.random.randn(n_samples)
  feature2 = feature1 + 0.1 * np.random.randn(n_samples) # Highly correlated
  feature3 = 2 * feature1 + 0.05 * np.random.randn(n_samples) # Linear combination
  feature4 = np.random.randn(n_samples) # Independent
  feature5 = -feature1 + 0.1 * np.random.randn(n_samples) # Negatively correlated
  
  # Create DataFrame