🎯 Support Vector Machines

Master maximum margin classifiers, kernel methods, and optimization techniques for robust pattern recognition

← Back to Data Science

Support Vector Machines Curriculum

11
Core Units
~65
Key Concepts
8+
Kernel Types
25+
Practical Examples
1

Linear Separable Classification

Understand linear separability and the foundation of support vector machines.

  • Linear separability concept
  • Hyperplane geometry
  • Decision boundaries
  • Perceptron limitations
  • Multiple separating planes
  • Optimal hyperplane idea
  • Binary classification setup
  • Mathematical formulation
2

Maximum Margin Principle

Learn the core principle of maximizing margin for optimal classification.

  • Margin definition
  • Geometric margin
  • Functional margin
  • Maximum margin classifier
  • Distance to hyperplane
  • Margin maximization intuition
  • Generalization benefits
  • Unique optimal solution
3

Support Vectors

Understand the crucial role of support vectors in SVM optimization.

  • Support vector definition
  • Critical data points
  • Margin boundaries
  • Sparse solution property
  • Support vector identification
  • Model robustness
  • Outlier resistance
  • Computational efficiency
4

Optimization Problem

Master the mathematical optimization framework behind SVMs.

  • Primal optimization problem
  • Quadratic programming
  • Lagrange multipliers
  • KKT conditions
  • Dual formulation
  • Convex optimization
  • Global optimum guarantee
  • SMO algorithm
5

Soft Margin SVM

Handle non-separable data with soft margin classification.

  • Non-separable data problems
  • Slack variables introduction
  • Soft margin formulation
  • C parameter tuning
  • Bias-variance tradeoff
  • Hinge loss function
  • Regularization effects
  • Outlier handling
6

Kernel Trick

Transform data into higher dimensions using the powerful kernel trick.

  • Feature space transformation
  • High-dimensional mapping
  • Kernel function concept
  • Dot product in feature space
  • Computational efficiency
  • Mercer's theorem
  • Valid kernel conditions
  • Implicit feature mapping
7

Kernel Functions

Explore different kernel functions and their applications.

  • Linear kernel
  • Polynomial kernel
  • Radial Basis Function (RBF)
  • Gaussian kernel
  • Sigmoid kernel
  • Custom kernel design
  • Kernel parameter tuning
  • Kernel selection strategies
8

Non-linear Classification

Apply SVMs to complex non-linear classification problems.

  • Non-linear decision boundaries
  • Kernel-based classification
  • Feature space visualization
  • RBF kernel applications
  • Polynomial relationships
  • Complex pattern recognition
  • Overfitting prevention
  • Kernel parameter effects
9

SVM for Regression

Extend SVM principles to regression problems with SVR.

  • Support Vector Regression
  • Epsilon-insensitive loss
  • Tube regression concept
  • Linear SVR
  • Non-linear SVR
  • Support vector identification
  • Hyperparameter tuning
  • Robust regression
10

Multiclass SVM

Extend binary SVMs to handle multiclass classification problems.

  • One-vs-One strategy
  • One-vs-Rest approach
  • Binary decomposition
  • Voting mechanisms
  • ECOC methods
  • Computational complexity
  • Decision function combination
  • Multiclass optimization
11

Implementation and Practice

Build and deploy SVM models using practical tools and techniques.

  • Scikit-learn SVM implementation
  • Data preprocessing for SVM
  • Feature scaling importance
  • Hyperparameter tuning
  • Cross-validation strategies
  • Model evaluation metrics
  • Computational scalability
  • Real-world applications

Unit 1: Linear Separable Classification

Understand linear separability and the foundation of support vector machines.

Linear Separability Concept

Learn what it means for data to be linearly separable and why this is important for SVMs.

Hyperplane Separable Binary
A dataset is linearly separable if there exists a hyperplane that can perfectly separate the data points of different classes without any misclassification errors.

Hyperplane Geometry

Understand the mathematical representation of hyperplanes in n-dimensional space.

Hyperplane Equation: w₁x₁ + w₂x₂ + ... + wₙxₙ + b = 0
Or in vector form: wᵀx + b = 0
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

# Generate linearly separable data
X, y = make_classification(n_samples=100, n_features=2,
                           n_redundant=0, n_informative=2,
                           n_clusters_per_class=1, random_state=42)

# Hyperplane parameters
w = np.array([1, -1]) # Normal vector
b = 0.5 # Bias term

# Plot data and hyperplane
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='RdYlBu')

# Create hyperplane
x_line = np.linspace(X[:, 0].min(), X[:, 0].max(), 100)
y_line = -(w[0] * x_line + b) / w[1]
plt.plot(x_line, y_line, 'k-', linewidth=2)
plt.title('Linear Separable Data with Hyperplane')
plt.show()

Decision Boundaries

Understand how hyperplanes serve as decision boundaries for classification.

Decision Rule: For a point x, classify as:
• Class +1 if wᵀx + b > 0
• Class -1 if wᵀx + b < 0
• On boundary if wᵀx + b = 0
def classify_point(x, w, b):
  """Classify a point using linear decision boundary"""
  decision_value = np.dot(w, x) + b
  
  if decision_value > 0:
    return +1
  elif decision_value < 0:
    return -1
  else:
    return 0 # On the boundary

# Example usage
w = np.array([1, -1])
b = 0.5

test_points = np.array([[2, 1], [1, 2], [0, 0.5]])

for point in test_points:
  prediction = classify_point(point, w, b)
  distance = abs(np.dot(w, point) + b) / np.linalg.norm(w)
  print(f"Point {point}: Class {prediction}, Distance {distance:.2f}")

Multiple Separating Planes

Learn why there can be infinite hyperplanes that separate linearly separable data.

For linearly separable data, there are infinitely many hyperplanes that can achieve perfect separation. The question becomes: which one should we choose and why?
# Demonstrate multiple separating hyperplanes
import numpy as np
import matplotlib.pyplot as plt

# Simple 2D linearly separable data
class1 = np.array([[1, 1], [2, 2], [2, 1]])
class2 = np.array([[4, 4], [5, 5], [4, 5]])

plt.figure(figsize=(8, 6))
plt.scatter(class1[:, 0], class1[:, 1], c='red', marker='o', s=100)
plt.scatter(class2[:, 0], class2[:, 1], c='blue', marker='s', s=100)

# Multiple possible separating lines
x = np.linspace(0, 6, 100)

# Different separating hyperplanes
y1 = x - 0.5 # Line 1
y2 = x + 0.5 # Line 2
y3 = 0.5*x + 1 # Line 3

plt.plot(x, y1, 'g--', label='Hyperplane 1')
plt.plot(x, y2, 'm--', label='Hyperplane 2')
plt.plot(x, y3, 'orange', '--', label='Hyperplane 3')

plt.legend()
plt.title('Multiple Possible Separating Hyperplanes')
plt.xlabel('X1')
plt.ylabel('X2')
plt.grid(True, alpha=0.3)
plt.show()

Optimal Hyperplane Idea

Understand the motivation for finding the "best" hyperplane among all possible separating hyperplanes.

Generalization Robustness Margin
# Intuition: Why maximum margin?

reasons_for_max_margin = {
  "Generalization": "Better performance on unseen data",
  "Robustness": "Less sensitive to small data variations",
  "Confidence": "Points far from boundary are classified more confidently",
  "Uniqueness": "Only one maximum margin hyperplane exists",
  "Theory": "Statistical learning theory supports maximum margin"
}

# The maximum margin hyperplane maximizes the minimum
# distance from any training point to the decision boundary

def margin_width(X, y, w, b):
 &